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Abstract. A recently proposed renormalization group approach to dimensional crossover in
quasi-one-dimensional quantum antiferromagnets is improved and then shown to give identical
results, in some cases, to those obtained earlier.

Recently [1], a renormalization group (RG) approach was proposed to study a quasi-
one-dimensional quantum antiferromagnet, in which the ratio of inter-chain to intra-chain
couplings, R → 0. The approach works equally well for crossover to two- or three-
dimensional behaviour. It is based on a nonlinearσ -model representation. InD spacetime
dimensions, using the imaginary time formalism, and rescaling time so that the spin-wave
velocity is one, the action is written:

S = (3D−2/2g)

∫
dDx(∇φ)2. (1)

Here φ is the unit normalizedn-component order parameter. It represents the three-
component Ńeel order parameter for the Heisenberg antiferromagnet in (D − 1) spatial
dimensions atT = 0. Alternatively, it could present a classicaln-component magnetic
order parameter inD spatial dimensions at finite temperature.3 is an ultraviolet cut-
off and g is the dimensionless coupling constant. In the spin-s quantum antiferromagnet,
g ≈ 2/s and increases with frustration. For the classical system,g is proportional to the
temperature,T .

There are actually two quite distinct cases, corresponding to integer or half-integer
spin in the quantum system. For integer spin the (1+ 1)-dimensional system has a finite
correlation length whereas for half-integer spin it is infinite (atT = 0), with power-law
decay of the correlation function; i.e. quasi-long-range order. In the half-integer case,
the σ -model action also contains a topological term, but this does not renormalize, so we
need not keep track of it explicitly [2]. In this paper we will focus on the half-integer
case. Likewise a two-dimensional classical system has a finite correlation length (at finite
temperature) for the Heisenberg case but an infinite correlation length in thexy case (forT
less than the Kosterlitz–Thouless temperature,TKT). In the following paragraphs, we will
use the language of classical two- to three-dimensional crossover. We then comment at the
end on the implications for the quasi-one-dimensional quantum case and for various other
dimensionalities.

In [1] the quasi-two-dimensional case was represented by the same model, equation (1)
after an appropriate rescaling of lengths in different directions, but with an ultraviolet cut-off
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which is much smaller in the weakly coupled (z) direction than in the two strongly coupled
directions. Thus it was argued that one should use the two-dimensional RG until the cut-
off for the strongly coupled directions is reduced to the same value as the other cut-off.
Thereafter one should use the three-dimensional RG. Thus the first stage of renormalization
just provides some effective bare coupling constant to be fed into in the three-dimensional
RG equations.

The purpose of this paper is to improve this argument in two ways. First of all, it is
not really correct to use a continuum, derivative, representation for the weak inter-plane
couplings in the intial stage of renormalization. Because the planes are weakly coupled
the order parameters at adjacent points on neighbouring planes are not neccessarily nearly
parallel. Rather, we should use a discrete representation for this inter-plane coupling. Thus
the appropriate action (or classical Hamiltonian) is

S = (1/2g)
∑

i

∫
d2r[(∂xφi )

2 + (∂yφi )
2 + R32φi · φi+1]. (2)

Only in the second stage of renormalization can we use a gradient representation for the
inter-plane coupling, as in equation (1). The other improvement is to take into account the
rescaling of the fieldφi during the first stage of renormalization,

φ → (3′/3)xφ. (3)

Here3′ < 3 is the reduced cut-off after the renormalization.x is the scaling dimension of
the fieldφ. These improvements do not change the basic qualitative picture of [1] but lead
to consistency with various earlier approaches, reviewed below.

To understand the neccessity for this rescaling and the significance of the exponent,x,
consider a real-space block-spin RG transformation in two dimensions where the block has
size l. That is we averagel2 unit-length spins. We assume that the spins in the block are
approximately aligned due to the quasi-long-range order. However, they do exhibit some
random misalignment so that the averaged spin has a magnitude which is approximately

|φav| ≈ l−x.

The exponentx can be seen to be the scaling dimension of the field. That is the correlation
function goes as:

〈φ(r) · φ(0)〉 ∝ r−2x.

We see this by letting the block size (possibly after many iterations) becomer. At this stage,
r and0 are in the same block in the effective theory so they are aligned. The drop-off of
the correlation function, from this view point arises from the reduction in the size of the
block spin. In the momentum space renormalization group, discussed above and in [1], the
block size is essentially3/3′. Thus the averaged field appearing in the interplane coupling
in equation (2) is(3′/3)x times the unit-normalized field. Since we choose to work with
a unit field in the nonlinearσ -model approach, we must rescaleφ as in equation (3).

We switch over to the 3D RG when the coefficient ofφi · φi+1 (written in terms of the
renormalizedfield) obeys the condition:

R(3′/3)2x32/2g ≈ 3′2/2g(3′). (4)

At this stage it is appropriate to replace the lattice coupling by a continuous version:

3′2φi · φi+1 ≈ (∂zφ)2.

The point is that now this coupling in thez-direction is about as equally strong as that in the
other directions, so the fields start to lock together in different planes.3′ is the appropriate
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factor to adsorb into defining the derivative∂z since it is the effective cut-off. Hereafter
we use the 3D RG. Whether the system orders or not depends on whether the effective
bare coupling for the 3D RG, obtained from the first stage of renormalization, is larger or
smaller than the critical couplinggc in the 3D theory. In the two-dimensional theory, the
coupling flows, in the infrared, to a limiting valueg2(0) (see below). Thus whether or
not order occurs for infinitesimalR depends on whetherg2(0) is larger or smaller thangc.
Since no general argument was apparent for which is larger, and it may not be universal, the
question was investigated numerically in [1] for the square lattices = 1/2 antiferromaget.
The conclusion was thatg2(0) < gc, so order occurs for infinitesimal interplane coupling.

The above improvements change the previous analysis of [1] in two ways. First of all
they change the estimate of the scale at which we switch to the higher dimensional RG.
This scale,3′ is now given by the above condition, equation (4), that is

3′ = 3R1/[2(1−x)] . (5)

(We have assumed thatg/g(3′) ≈ g/g2(0) is of order one. This assumption is discussed
below.) This does not change the qualitative picture. The other important change involves
the size of the ordered moment in the 3D phase. Since the bare coupling in the 3D theory,
determined at the scale3′, is of O(1), so is the expectation value of the unrenormalized
field φ, in the 3D theory. However, this unrenormalized field in the 3D theory has actually
been rescaled by a factor of

(3′/3)x = Rx/[2(1−x)] .

Therefore the actual magnetization has a value

〈φ〉 ∝ Rx/[2(1−x)] . (6)

In [1] the ‘chain mean-field theory’ of [3] was generalized to deal with this type of
crossover. In this approach the two-dimensional system is treated exactly (in principle) but
the higher dimensional coupling is treated in mean-field theory. The mean field is

hMF ∝ R〈φ〉 > .

In the lower dimensional (D = 2) theory the magnetization scales as

〈φ〉 ∝ h
x/(2−x)
MF ∝ (R〈φ〉)x/(2−x).

This gives

〈φ〉 ∝ Rx/[2(1−x)]

the same equation as obtained by the RG approach.
This ‘chain mean-field theory’ is also essentially equivalent to the crossover scaling

theory of [4, 5] as applied to the classicalxy model in [6, 7]. Now g ∝ T . The
two-dimensional theory exhibits a critical line,g < gKT. Assuming that the Kosterlitz–
Thouless temperaturegKT < gc, the three-dimensional critical temperature, as is indicated
by numerical simulations, the system orders for arbitrarily weak inter-plane coupling. The
scaling exponent obeys 0< x < 1/8 along the critical line, reaching the value 1/8 at gKT.

For the half-integer spin Heisenberg quantum antiferromagnet, the (1+ 1)-dimensional
coupling flows to a marginally stable fixed point,g2(0) separating the quasi-long-range
ordered phase from the spontaneously dimerized phase, withx = 1/2. (Thes = 1/2 xxz

chain with |J z| < Jx , is similar to the classicalxy model atT < TKT, except that the
exponentx falls in the range 0< x < 1/2 [2].) The above analysis gives〈φ〉 ∝ R1/2

for the Heisenberg model. The ordered moment scales to zero as the square root of the
inter-chain coupling.
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In deriving equation (5) we have assumed thatg/g(3′) is of order one. Generally,
g(3′) ≈ g2(0) is O(1) and the bare coupling,g, is alsoO(1) so this assumption is valid.
However, there are certain cases whereg � 1. This occurs for a large-s antiferromagnet,
whereg ≈ 2/s. (It may also occur even for smalls with certain longer-range interactions
that suppress quantum fluctuations.) Since the two-dimensionalβ-function is quadratic at
small g,

dg/d ln3′ ≈ −g2/2π (7)

g(3′) remains small until the cut-off,3′ has been reduced to exponentially small values,
of O(e−2π/g). Thus, assumingR, although small compared to 1, is not exponentially small,
that is,

e−2π/g � R � 1 (8)

we may essentially ignore the renormalization ofg. The behaviour of the two-dimensional
system is governed by the unstableg = 0 fixed point which corresponds to long-range
order. We may still apply the above analysis, except that nowg(3′) in equation (4) does
not equalg2(0), but is rather approximately equal tog and the effective value ofx is 0.
Therefore, from equation (6) the magnetization is O(1) and from equation (5), the crossover
scale is proportional to

√
R. In this case ‘crossover’ may not be the correct term since

the system behaves as if it is ordered in both two- and three-dimensional regimes.
√

R is
simply the scale at which the three-dimensional dispersion becomes significant in a classical
spin-wave analysis.

The above discussion assumed crossover from (1+1) dimensions to (2+1) dimensions,
and numerical results on this case were presented in [1]. However, the above argument
works equally well for crossover from (1+ 1) to (3+ 1) dimensions. This follows since
the only property of the higher dimensional theory that was used was the fact that there is
an order–disorder transition at finiteg. Thus our analysis is relevant to real experimental
systems such as SrCu2O3. The crossover scale is, from equation (5), proportional toR. This
means, for example, that the neutron scattering cross section should exhibit one-dimensional
behaviour down to wavevectorsk − πa ∝ R, where crossover to three-dimensional (Néel
ordered) behaviour should occur. A similar statement holds for the frequency or temperature
dependence with the crossover temperature being of the order of the inter-chain coupling.
Crossover from (2+ 1) to (3+ 1) dimensions in quantum antiferromagnets was analysed by
Chakravartyet al [8].

To conclude, the RG approach of [1] to dimensional crossover suggests that order occurs
for infinitesimal higher dimensional coupling only if the renormalized coupling in the lower
dimensional theory,g2(0), is smaller than the critical coupling in the higher dimensional
theory,gc. In that case, this approach gives the same results as the mean-field approach,
or previous crossover scaling arguments. While all examples studied so far seem to obey
g2(0) < gc, the other possibility may be realized in quasi-one-dimensional antiferromagnets
with sufficiently frustrating inter-chain couplings.
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